Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1371336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601934

RESUMEN

Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense, Tropical Race 4 (TR4) is a soil-borne disease, and it is devastating. At present, the biological control using antagonistic microorganisms to mitigate TR4 is one of the best strategies as a safe and green way. Yunnan has abundant and diverse microbial resources. Using the dual-culture method, the antagonistic endophytic fungi against TR4 were isolated and screened from the root nodule of Dolichos lablab. The effect of the highest antagonistic activity strain on the morphology of the TR4 mycelium was observed using the scanning electron microscope. According to morphological characteristics and sequence analysis, the strain was identified. The biocontrol effect and plant growth promotion were investigated by greenhouse pot experiment. Using the confocal laser scanning microscope and the real-time fluorescence quantitative PCR, the dynamics of TR4 infestation and the TR4 content in banana plant roots and corms would also be detected. In this study, 18 native endophytic fungi were isolated from a root nodule sample of Dolichos lablab in the mulch for banana fields in Yuxi, Yunnan Province, China. The YNF2217 strain showed a high antagonistic activity against TR4 in plate confrontation experiments, and the inhibition rate of YNF2217 is 77.63%. After TR4 culture with YNF2217 for 7 days in plate confrontation experiments, the morphology of the TR4 mycelium appeared deformed and swollen when observed under a scanning electron microscope. According to morphological characteristics and sequence analysis, the strain YNF2217 was identified as Pochonia chlamydosporia. In the greenhouse pot experiment, the biocontrol effect of YNF2217 fermentation solution on TR4 was 70.97% and 96.87% on banana plant leaves and corms, respectively. Furthermore, YNF2217 significantly promoted the growth of banana plants, such as plant height, leaf length, leaf width, leaf number, pseudostem girth, and both the aboveground and underground fresh weight. Observations of TR4 infestation dynamics in banana roots and corms, along with real-time fluorescence quantitative PCR, verified that YNF2217 inoculation could significantly reduce the TR4 content. Therefore, YNF2217 as P. chlamydosporia, which was found first time in China and reported here, is expected to be an important new fungal resource for the green control of Fusarium wilt of banana in the future.

2.
J Med Chem ; 67(9): 7130-7145, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38630077

RESUMEN

Multitarget medications represent an appealing therapy against the disease with multifactorial abnormalities─cancer. Therefore, simultaneously targeting son of sevenless 1 (SOS1) and epidermal growth factor receptor (EGFR), two aberrantly expressed proteins crucial for the oncogenesis and progression of prostate cancer, may achieve active antitumor effects. Here, we discovered dual SOS1/EGFR-targeting compounds via pharmacophore-based docking screening. The most prominent compound SE-9 exhibited nanomolar inhibition activity against both SOS1 and EGFR and efficiently suppressed the phosphorylation of ERK and AKT in prostate cancer cells PC-3. Cellular assays also revealed that SE-9 displayed strong antiproliferative activities through diverse mechanisms, such as induction of cell apoptosis and G1 phase cell cycle arrest, as well as reduction of angiogenesis and migration. Further in vivo findings showed that SE-9 potently inhibited tumor growth in PC-3 xenografts without obvious toxicity. Overall, SE-9 is a novel dual-targeting SOS1/EGFR inhibitor that represents a promising treatment strategy for prostate cancer.


Asunto(s)
Antineoplásicos , Proliferación Celular , Receptores ErbB , Neoplasias de la Próstata , Proteína SOS1 , Masculino , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Proteína SOS1/antagonistas & inhibidores , Proteína SOS1/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/uso terapéutico , Ratones Desnudos , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C
3.
Water Res ; 254: 121351, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401287

RESUMEN

The application of Fenton-like membrane reactors for water purification offers a promising solution to overcome technical challenges associated with catalyst recovery, reaction efficiency, and mass transfer typically encountered in heterogeneous batch reaction modes. This study presents a dual-modification strategy encompassing electron polarization and defect engineering to synthesize Al-doped and oxygen vacancies (OV)-enriched Co3O4 spinel catalysts (ACO-OV). This modification empowered ACO-OV with exceptional performance in activating peroxymonosulfate (PMS) for the removal of organic contaminants. Moreover, the ACO-OV@polyethersulfone (PES) membrane/PMS system achieved organic contaminant removal through filtration (with a reaction kinetic constant of 0.085 ms-1), demonstrating outstanding resistance to environmental interference and high operational stability. Mechanistic investigations revealed that the exceptional catalytic performance of this Fenton-like membrane reactor stemmed from the enrichment of reactants, exposure of reactive sites, and enhanced mass transfer within the confined space, leading to a higher availability of reactive species. Theoretical calculations were conducted to validate the beneficial intrinsic effects of electron polarization, defect engineering, and the confined space within the membrane reactor on PMS activation and organic contaminant removal. Notably, the ACO-OV@PES membrane/PMS system not only mineralized the targeted organic contaminants but also effectively mitigated their potential environmental risks. Overall, this work underscores the significant potential of the dual-modification strategy in designing spinel catalysts and Fenton-like membrane reactors for efficient organic contaminant removal.


Asunto(s)
Óxido de Aluminio , Cobalto , Electrones , Óxidos , Polímeros , Sulfonas , Óxido de Magnesio , Peróxidos
4.
RSC Med Chem ; 15(1): 151-164, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38283220

RESUMEN

Herein, a series of novel ß-elemene hybrids with different types of hydrogen sulfide (H2S) donors was designed and synthesized for the first time. In addition, all compounds were tested for H2S release in phosphate buffer solution assay, among which the derivatives with 5-p-hydroxyphenyl-3H-1,2-dithiole-3-thione (ADT-OH) as the H2S donor released the best level. The results of the isolated vasodilation assay revealed that all the compounds exhibited a degree of vasodilatory effect, and the representative compound "ß-elemene-H2S gas donor" hybrid L13-2h produced more than 50% vasodilatory activity at a concentration of 20 µM. Furthermore, L13-2h possessed good concentration dependence and significantly better vasodilatory activity than the lead compound L13. In the RAW 264.7 cellular lipid inhibition against oxidized low-density lipoprotein (ox-LDL) stimulation assay, eight compounds, including L13-2g and L13-2h, produced significant cellular lipid-lowering activity. The results of the further antioxidant activity study showed that the representative compounds L13-2g and L13-2h improved H2O2-induced oxidative damage in HUVEC cells and compound L13-2h exhibited excellent antioxidant damage protection activity compared to the positive control. Moreover, none of the target compounds appeared to be significantly cytotoxic at the tested concentrations. These results suggest that the hybridization of hydrogen sulfide donors with ß-elemene provides a promising approach for the discovery of novel anti-atherosclerotic drugs from natural products.

5.
Bioorg Chem ; 143: 107039, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134519

RESUMEN

Autophagy is a ubiquitous pathological/physiological antioxidant cellular reaction in eukaryotic cells. Vacuolar protein sorting 34 (Vps34 or PIK3C3), which plays a crucial role in autophagy, has received much attention. As the only Class III phosphatidylinositol-3 kinase in mammals, Vps34 participates in vesicular transport, nutrient signaling and autophagy. Dysfunctionality of Vps34 induces carcinogenesis, and abnormal autophagy mediated by dysfunction of Vps34 is closely related to the pathological progression of various human diseases, which makes Vps34 a novel target for tumor immunotherapy. In this review, we summarize the molecular mechanisms underlying macroautophagy, and further discuss the structure-activity relationship of Vps34 inhibitors that have been reported in the past decade as well as their potential roles in anticancer immunotherapy to better understand the antitumor mechanism underlying the effects of these inhibitors.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III , Animales , Humanos , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Transporte de Proteínas , Proteínas Relacionadas con la Autofagia/metabolismo , Transducción de Señal , Mamíferos/metabolismo
6.
J Med Chem ; 66(23): 16187-16200, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38093696

RESUMEN

Dual inhibition of tubulin and neuropilin-1 (NRP1) may become an effective method for cancer treatment by simultaneously killing tumor cells and inhibiting tumor angiogenesis. Herein, we identified dual tubulin/NRP1-targeting inhibitor TN-2, which exhibited good inhibitory activity against both tubulin polymerization (IC50 = 0.71 ± 0.03 µM) and NRP1 (IC50 = 0.85 ± 0.04 µM). Importantly, it significantly inhibited the viability of several human prostate tumor cell lines. Further mechanism studies indicated that TN-2 could inhibit tubulin polymerization and cause G2/M arrest, thereby inducing cell apoptosis. It could also suppress cell tube formation, migration, and invasion. Moreover, TN-2 showed obvious antitumor effects on the PC-3 cell-derived xenograft model with negligible side effects and good pharmacokinetic profiles. These data demonstrate that TN-2 could be a promising dual-target chemotherapeutic agent for the treatment of prostate cancer.


Asunto(s)
Antineoplásicos , Tubulina (Proteína) , Humanos , Línea Celular Tumoral , Tubulina (Proteína)/metabolismo , Neuropilina-1 , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Apoptosis , Farmacóforo , Proliferación Celular , Puntos de Control de la Fase G2 del Ciclo Celular , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/uso terapéutico , Moduladores de Tubulina/química , Polimerizacion , Relación Estructura-Actividad
7.
Eur J Med Chem ; 262: 115881, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37883897

RESUMEN

A series of novel dihydroquinolin-4(1H)-one derivatives targeting colchicine binding site on tubulin were designed, synthesized and evaluated as anticancer agents. The most potent compound 6t showed remarkable antiproliferative activities against four cancer cell lines with IC50 values among 0.003-0.024 µM and tubulin polymerization inhibitory activity (IC50 = 3.06 µM). Further mechanism studies revealed that compound 6t could induce K562 cells apoptosis and arrest at the G2/M phase. Meanwhile, 6t significantly inhibited migration and invasion of MDA-MB-231 cells, and disrupted the angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro. In addition, compound 6t inhibited tumor growth in H22 allograft tumor model with a tumor growth inhibition (TGI) rate of 63.3 % (i.v., 20 mg/kg per day) without obvious toxicity. Collectively, these results indicated that compound 6t was a novel tubulin polymerization inhibitor with potent anticancer properties in vitro and in vivo.


Asunto(s)
Antineoplásicos , Moduladores de Tubulina , Humanos , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Relación Estructura-Actividad , Línea Celular Tumoral , Células Endoteliales/metabolismo , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Polimerizacion
8.
Front Microbiol ; 14: 1211301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601384

RESUMEN

Fusarium wilt of banana (FWB) caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), poses a serious problem for sustainable banana production. Biological control is one of the effective measures to control this destructive disease. High-throughput sequencing of soil microorganisms could significantly improve the efficiency and accuracy of biocontrol strain screening. In this study, the soil microbial diversity of six main banana-producing areas in Yunnan was sequenced by Illumina Miseq platform. The outcome of this study showed the genus of Chujaibacter, Bacillus, and Sphingomonas were significantly enriched in microorganism community composition. Further correlation analysis with soil pathogen (Foc TR4) content showed that Bacillus was significantly negatively correlated with pathogen content. Therefore, we isolated and identified Bacillus from the disease-suppressive soils, and obtained a B. velezensis strain YN1910. In vitro and pot experiments showed that YN1910 had a significant control effect (78.43-81.76%) on banana Fusarium wilt and had a significant growth promotion effect on banana plants.

9.
J Enzyme Inhib Med Chem ; 38(1): 2247579, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37587873

RESUMEN

Angiogenesis plays an important role in tumour generation and progression, which is used to supply nutrients and metastasis. Herein, a series of novel dihydro-1H-indene derivatives were designed and evaluated as tubulin polymerisation inhibitors by binding to colchicine site, exhibiting anti-angiogenic activities against new vessel forming. Through structure-activity relationships study, compound 12d was found to be the most potent derivative possessing the antiproliferative activity against four cancer lines with IC50 values among 0.028-0.087 µM. Compound 12d bound to colchicine site on tubulin and inhibited tubulin polymerisation in vitro. In addition, compound 12d induced cell cycle arrest at G2/M phase, stimulated cell apoptosis, inhibited tumour metastasis and angiogenesis. Finally, the results of in vivo assay suggested that compound 12d could prevent tumour generation, inhibit tumour proliferation and angiogenesis without obvious toxicity. Collectively, all these findings suggested that compound 12d is a novel tubulin polymerisation inhibitor deserving further research.


Asunto(s)
Indenos , Moduladores de Tubulina , Moduladores de Tubulina/farmacología , Tubulina (Proteína) , Colchicina
10.
J Med Chem ; 66(16): 10917-10933, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37535706

RESUMEN

Targeted protein degradation (TPD) technologies have catalyzed a paradigm shift in therapeutic strategies and offer innovative avenues for drug design. Hydrophobic tags (HyTs) are bifunctional TPD molecules consisting of a ″lipophilic small-molecule tags″ group and a small-molecule ligand for the target protein. Despite the vast potential of HyTs, they have received relatively limited attention as a promising frontier. Leveraging their lower molecular weight and reduced numbers of hydrogen bond donors/acceptors (HBDs/HBAs) in comparison with proteolysis-targeting chimeras (PROTACs), HyTs present a compelling approach for enhancing druglike properties. In this Perspective, we explore the diverse range of HyT structures and their corresponding degradation mechanisms, thereby illuminating their broad applicability in targeting a diverse array of proteins, including previously elusive targets. Moreover, we scrutinize the challenges and opportunities entailed in developing this technology as a viable and fruitful strategy for drug discovery.


Asunto(s)
Descubrimiento de Drogas , Proteínas , Proteolisis , Proteínas/metabolismo , Diseño de Fármacos , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
11.
Eur J Med Chem ; 257: 115529, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37269670

RESUMEN

A series of novel stilbene-based derivatives were designed and synthesized as tubulin/HDAC dual-target inhibitors. Among forty-three target compounds, compound II-19k not only exhibited considerable antiproliferative activity in the hematological cell line K562 with IC50 value of 0.003 µM, but also effectively inhibited the growth of various solid tumor cell lines with IC50 values ranging from 0.005 to 0.036 µM. The mechanism studies demonstrated that II-19k could inhibit microtubules and HDACs at the cellular level, block cell cycle arrest at G2 phase, induce cell apoptosis, and reduce solid tumor cells metastasis. What's more, the vascular disrupting effects of compound II-19k were more pronounced than the combined administration of parent compound 8 and HDAC inhibitor SAHA. The in vivo antitumor assay of II-19k also showed the superiority of dual-target inhibition of tubulin and HDAC. II-19k significantly suppressed the tumor volume and effectively reduced tumor weight by 73.12% without apparent toxicity. Overall, the promising bioactivities of II-19k make it valuable for further development as an antitumor agent.


Asunto(s)
Antineoplásicos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Antineoplásicos/farmacología , Relación Estructura-Actividad , Apoptosis
12.
Eur J Med Chem ; 253: 115338, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037138

RESUMEN

Currently, bioorthogonal coupling reactions have garnered considerable interest due to their high substrate selectivity and less restrictive reaction conditions. During recent decades, bioorthogonal coupling reactions have emerged as powerful tools in drug development. This review describes the current applications of bioorthogonal coupling reactions in compound library building mediated by the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and in situ click chemistry or conjunction with other techniques; druggability optimization with 1,2,3-triazole groups; and intracellular self-assembly platforms with ring tension reactions, which are presented from the viewpoint of drug development. There is a reasonable prospect that bioorthogonal coupling reactions will accelerate the screening of lead compounds, the designing strategies of small molecules and expand the variety of designed compounds, which will be a new trend in drug development in the future.


Asunto(s)
Cobre , Desarrollo de Medicamentos , Cobre/química , Reacción de Cicloadición , Azidas/química , Química Clic/métodos , Alquinos/química , Catálisis
13.
Front Microbiol ; 14: 1138580, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032861

RESUMEN

Introduction: Natural weed cover and a legume cover crop were examined to determine if they could impact soil fungal diversity as an indicator of soil quality in banana production. Methods: Banana in Yunnan Province, China, was grown under three treatments: conventional tillage (bare soil), natural weed cover (primarily goosegrass (Eleusine indica (L.) Gaerth)), or a cover crop (Siratro (Macroptilium atropurpureum (DC.) Urb.)). Analysis of the soil fungal communities between 2017 and 2020 was done by Illumina Miseq high-throughput sequencing. Results: Most significant effects were in the intercropping area for the treatments, whereas it was rarely observed in the furrow planted with banana. Based on the Shannon and Simpson diversity indices, soil fungal diversity in the intercropping area significantly decreased following planting banana in 2017 with all three treatments. However, both the Shannon and Simpson diversity indices showed that there were significant increases in fungal soil diversity in 2019 and 2020 with natural weed cover or Siratro compared to bare soil. At the end of the experiment, significant increases in fungal genera with Siratro compared to bare soil were observed with Mortierella, Acremonium, Plectophaerella, Metarhizium and Acrocalymma, and significant decreases were observed with Fusicolla, Myrothecium, Exserohilum, Micropsalliota and Nigrospora. Siratro resulted in higher stability of the soil fungal microbiome by increasing the modularity and the proportion of negative co-occurrences compared to bare soil. For fungal guilds, Siratro significantly increased saprotrophs_symbiotrophs in 2019 and 2020 and significantly decreased pathogens_saprotrophs in 2020 compared to bare soil. Discussion: Using Siratro as a cover crop in the intercropping area of banana helped maintain soil fungal diversity, which would be beneficial for soil health with more symbiotrophs and less pathogens in the soil. However, further research is needed to determine the long-term impact of weed or Siratro cover crop on the fungal soil ecosystem and growth of banana.

14.
Front Plant Sci ; 14: 1145837, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938065

RESUMEN

Fusarium wilt of banana, especially Tropical Race 4 (TR4) is a major factor restricting banana production. Developing a resistant cultivar and inducing plant defenses by elicitor application are currently two of the best options to control this disease. Isotianil is a monocarboxylic acid amide that has been used as a fungicide to control rice blast and could potentially induce systemic acquired resistance in plants. To determine the control effect of elicitor isotianil on TR4 in different resistant cultivars, a greenhouse pot experiment was conducted and its results showed that isotianil could significantly alleviate the symptoms of TR4, provide enhanced disease control on the cultivars 'Baxi' and 'Yunjiao No.1' with control effect 50.14% and 56.14%, respectively. We compared the infection processes in 'Baxi' (susceptible cultivars) and 'Yunjiao No.1' (resistant cultivars) two cultivars inoculated with pathogen TR4. The results showed that TR4 hyphae could rapidly penetrate the cortex into the root vascular bundle for colonization, and the colonization capacity in 'Baxi' was significantly higher than that in 'Yunjiao No.1'. The accumulation of a large number of starch grains was observed in corms cells, and further analysis showed that the starch content in 'Yunjiao No. 1' as resistant cultivar was significantly higher than that in 'Baxi' as susceptible cultivar, and isotianil application could significantly increase the starch content in 'Baxi'. Besides, a mass of tyloses were observed in the roots and corms and these tyloses increased after application with isotianil. Furthermore, the total starch and tyloses contents and the control effect in the corms of 'Yunjiao No.1' was higher than that in the 'Baxi'. Moreover, the expression levels of key genes for plant resistance induction and starch synthesis were analyzed, and the results suggested that these genes were significantly upregulated at different time points after the application of isotianil. These results suggest that there are significant differences between cultivars in response to TR4 invasion and plant reactions with respect to starch accumulation, tyloses formation and the expression of plant resistance induction and starch synthesis related genes. Results also indicate that isotianil application may contribute to disease control by inducing host plant defense against TR4 infection and could be potentially used together with resistant cultivar as integrated approach to manage this destructive disease. Further research under field conditions should be included in the next phases of study.

15.
J Med Chem ; 66(7): 5118-5153, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36997840

RESUMEN

High oxidative phosphorylation (OXPHOS) happens in some tumors, which depends on OXPHOS for energy supply, particularly in slow-cycling tumor cells. Therefore, targeting human mitochondrial RNA polymerase (POLRMT) to inhibit mitochondrial gene expression emerges as a potential therapeutic strategy to eradicate tumor cells. In this work, exploration and optimization of the first-in-class POLRMT inhibitor IMT1B and its SAR led to the identification of a novel compound D26, which exerted a strong antiproliferative effect on several cancer cells and decreased mitochondrial-related genes expression. In addition, mechanism studies demonstrated that D26 arrested cell cycle at the G1 phase and had no effect on apoptosis, depolarized mitochondria, or reactive oxidative stress generation in A2780 cells. Importantly, D26 exhibited more potent anticancer activity than the lead IMT1B in A2780 xenograft nude mice and had no observable toxic effect. All results suggest that D26 deserves to be further investigated as a potent and safe antitumor candidate.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Animales , Ratones , Humanos , Femenino , Línea Celular Tumoral , ARN Mitocondrial/metabolismo , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Ováricas/tratamiento farmacológico , ARN Polimerasas Dirigidas por ADN/metabolismo , Mitocondrias , Apoptosis , Proliferación Celular , Antineoplásicos/uso terapéutico
16.
J Med Chem ; 66(7): 5099-5117, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36940414

RESUMEN

Excessive melanin deposition may lead to a series of skin disorders. The production of melanin is carried out by melanocytes, in which the enzyme tyrosinase performs a key role. In this work, we identified a series of novel tyrosinase inhibitor hybrids with a dihydrochalcone skeleton and resorcinol structure, which can inhibit tyrosinase activity and reduce the melanin content in the skin. Compound 11c possessed the most potent activity against tyrosinase, showing IC50 values at nanomolar concentration ranges, along with significant antioxidant activity and low cytotoxicity. Furthermore, in vitro permeation tests, supported by HPLC analysis and 3D OrbiSIMS imaging visualization, revealed the excellent permeation of 11c. More importantly, compound 11c reduced the melanin content on UV-induced skin pigmentation in a guinea pig model in vivo. These results suggest that compound 11c may serve as a promising potent tyrosinase inhibitor for the development of a potential therapy to treat skin hyperpigmentation.


Asunto(s)
Hiperpigmentación , Melaninas , Animales , Cobayas , Monofenol Monooxigenasa , Hiperpigmentación/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
17.
Drug Discov Today ; 28(5): 103560, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958639

RESUMEN

The cytochrome P450 (CYP)4 family of enzymes are monooxygenases responsible for the ω-oxidation of endogenous fatty acids and eicosanoids and play a crucial part in regulating numerous eicosanoid signaling pathways. Recently, CYP4 gained attention as a potential therapeutic target for several human diseases, including cancer, cardiovascular diseases and inflammation. Small-molecule inhibitors of CYP4 could provide promising treatments for these diseases. The aim of the present review is to highlight the advances in the field of CYP4, discussing the physiology and pathology of the CYP4 family and compiling CYP4 inhibitors into groups based on their chemical classes to provide clues for the future discovery of drug candidates targeting CYP4.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Ácidos Grasos , Humanos , Familia 4 del Citocromo P450/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Grasos/metabolismo , Oxidación-Reducción , Eicosanoides/metabolismo
18.
Molecules ; 28(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36771004

RESUMEN

The protein ISG15 encoded by interferon-stimulated gene (ISG) 15 is the first identified member of the ubiquitin-like protein family and exists in the form of monomers and conjugated complexes. Like ubiquitin, ISG15 can mediate an ubiquitin-like modification by covalently modifying other proteins, known as ISGylation. There is growing evidence showing that both the free and conjugated ISG15 are involved in multiple key cellular processes, including autophagy, exosome secretion, DNA repair, immune regulation, and cancer occurrence and progression. In this review, we aim to further clarify the function of ISG15 and ISGylation in cancer, demonstrate the important relationship between ISG15/ISGylation and cancer, and emphasize new insights into the different roles of ISG15/ISGylation in cancer progression. This review may contribute to therapeutic intervention in cancer. However, due to the limitations of current research, the regulation of ISG15/ISGylation on cancer progression is not completely clear, thus further comprehensive and sufficient correlation studies are still needed.


Asunto(s)
Citocinas , Neoplasias , Humanos , Citocinas/metabolismo , Interferones , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Neoplasias/metabolismo
19.
Angew Chem Int Ed Engl ; 62(13): e202217246, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670545

RESUMEN

Hydrophobic tagging (HyT) is a potential therapeutic strategy for targeted protein degradation (TPD). Norbornene was discovered as an unprecedented hydrophobic tag in this study and was used to degrade the anaplastic lymphoma kinase (ALK) fusion protein by linking it to ALK inhibitors. The most promising degrader, Hyt-9, potently reduced ALK levels through Hsp70 and the ubiquitin-proteasome system (UPS) in vitro without compensatory upregulation of ALK. Furthermore, Hyt-9 exhibited a significant tumor-inhibiting effect in vivo with moderate oral bioavailability. More importantly, norbornene can also be used to degrade the intractable enhancer of zeste homolog 2 (EZH2) when tagged with the EZH2 inhibitor tazemetostat. Thus, the discovery of novel hydrophobic norbornene tags shows promise for the future development of TPD technology.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteolisis , Inhibidores Enzimáticos , Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/química
20.
Bioorg Chem ; 131: 106327, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36549254

RESUMEN

Protopanoxadiol is a key active ingredient derived from Panax ginseng that is well-known to exhibit anti-tumor activity. Previous research focused on the natural protopanaxadiol derivative AD-1 has demonstrated that it possesses broad spectrum anti-tumor activities in vitro and in vivo. However, its limited activity, selectivity, and cell permeability have impeded its therapeutic application. Herein, a series of novel AD-1 derivatives were designed and synthesized based on proteolysis-targeting chimera (PROTAC) technology by linking AD-1 at the C-3 and C-12 positions with pomalidomide through linkers of alkyl chain of differing lengths to achieve the goal of improving the efficacy of the parent compound. Among these synthesized PROTACs, the representative compound A05 exhibited the most potent anti-proliferative activity against A549 cells. Furthermore, mechanistic studies revealed that compound A05 was able to suppress MDM2 expression, disrupt interactions between p53 and MDM2 and readily induce apoptotic death via the mitochondrial apoptosis pathway. Moreover, the in vivo assays revealed that compound A05 exhibited both anti-proliferative and anti-metastatic activities in the zebrafish tumor xenograft model with A549 cells. Together, our findings suggest that AD-1 based PROTACs associated with the degradation of MDM2 may have promising effects for the treatment of lung cancer and this work provide a foundation for future efforts to develop novel anti-tumor agents from natural products.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Neoplasias Pulmonares , Quimera Dirigida a la Proteólisis , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Proliferación Celular , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteolisis , Quimera Dirigida a la Proteólisis/síntesis química , Quimera Dirigida a la Proteólisis/química , Quimera Dirigida a la Proteólisis/farmacología , Pez Cebra , Células A549
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...